Salivary malondialdehyde as an oxidative stress biomarker in oral and systemic diseases

Maryam Khoubnasabjafari¹ • Khalil Ansarin² • Abolghasem Jouyban³*

¹Assistant Professor, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
²Professor, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
³Professor, Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran
*Corresponding Author; E-mail: ajouyban@hotmail.com

Received: 29 March 2016; Accepted: 15 June 2015
This article is available from: http://dentistry.tbzmed.ac.ir/joddd

© 2016 Khoubnasabjafari et al. This is an Open Access article published and distributed by Tabriz University of Medical Sciences under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oxidative stress is the imbalance between oxidative status and the antioxidant levels in the biological system. A number of biomarkers are routinely used in clinical investigations to measure this imbalance, including malondialdehyde (MDA), F₂-isoprostanes, vitamins A, C and E, carotenoids, retinol, lipid hydroperoxides, protein carbonyl, total thiol, total antioxidant capacity, etc.

Saliva is a more attractive biological sample for clinical studies on oral diseases. In a recent review article, the advantages of saliva as an alternative biological sample for diagnosis, prognosis and therapeutic responsiveness of some diseases were discussed. Variations in the salivary concentrations of a number of biomarkers of oxidative stress were reviewed along with some characteristics of an ideal biomarker. Wang et al correctly emphasized the low reproducibility of the analytical methods used for quantification of oxidative stress biomarkers in saliva and guidelines were provided for a qualified practice on saliva collection, processing, storage and analysis. Two other review papers were also discussed on saliva analysis in some diseases.

The aim of this editorial is to provide further support for variations in one of the reviewed biomarkers, i.e. MDA. There are a number of confounding factors affecting the salivary concentrations of analytes some of which were mentioned in the published work. To show the very wide variations in MDA concentrations in saliva among various research groups, the salivary MDA concentrations of healthy control groups in the available reports are listed in the Table. MDA values were measured after derivatisation with thiobarbitoric acid using the mentioned analytical methods in the last column of the Table.

As clearly shown in the review article, controversial findings were reported for most clinical cases. As an example, the salivary MDA values for oral lichen planus were reported 3.5 nmol/L, 430 nmol/L, 2030 nmol/L and 5800 nmol/L. The corresponding values for the control groups were 3.2, 80, 1470 and 3200 nmol/L, respectively. The data were scattered even for a given research group; as an example the MDA values of the control groups varied from 27⁹ to 680¹¹ to 900⁸ nmol/L. These discrepancies were also observed when a single analytical method with the same analytical conditions was used to measure the MDA levels in biological samples.

Careful examination of MDA values in the control groups of the reported results in the Table reveals that they varied from 3.2 nmol/L to 3960 nmol/L (1237 folds), which is an unacceptable variation for healthy controls. Wide variations were also observed for plasma MDA concentrations. These wide variations might have originated from different sources, including saliva sample collection procedure, storage of samples prior to analysis, and the analytical method. As an example, co-existence of some biochemical agents in saliva could interfere with spectroscopic analysis of MDA and sialic acid is a classical analyte interfering with MDA in biological samples.
Lipid peroxidation, reaction of deoxyribose with a hydroxyl radical, γ-irradiation of carbohydrates and prostaglandin synthesis pathway are the main sources of systemic MDA concentrations. Salivary MDA originates from systemic sources and also its production in the oral cavity. It is also formed in foods and MDA levels in biological samples are affected by smoking and some drugs.29 and references therein

The chemical stability of MDA solutions, its reactions with biochemical agents and metabolism of MDA in biological samples are the other effective parameters. The MDA measurement methods are based on thiobarbitoric acid derivation possess poor reproducibility, low repeatability and non-specificity. More details on the validity of MDA measurements in biological samples were discussed in a recent review article.29 These limitations on MDA analysis and its action as a biomarker of oxidative stress have been noticed in a number of publications,30-37 however, they have been ignored by some research groups as clearly mentioned.38 Interestingly, most clinical studies on MDA variations in pathological conditions published in recent years have used simple spectroscopic analysis whereas the validity of this analytical method is seriously questionable. We would like to recommend biomedical researchers to evaluate the validation criteria of an analytical method prior to its use for determination of MDA levels in biological samples. Full details of such criteria were reported in the guidelines of the Food and Drug Administration (FDA) for biological analysis.39 According to our observations, most of the criteria for MDA analysis do not successfully fulfill the FDA requirements. This shortcoming in the method validation criteria could result in unreliable MDA levels found in different research papers even measured by a single analytical method and consequent controversial discussion on the clinical findings.

In conclusion, although saliva sampling,

Table. Salivary MDA concentrations in the case and control groups of available reports, the number of observations (N), the analytical method used (after derivation with thiobarbitoric acid) and their references

<table>
<thead>
<tr>
<th>Disease</th>
<th>MDA (nmol/L) of case (N)</th>
<th>MDA (nmol/L) of control (N)</th>
<th>Analytical method*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic periodontitis</td>
<td>100 (36)</td>
<td>60 (28)</td>
<td>HPLC</td>
<td>4</td>
</tr>
<tr>
<td>Chronic periodontitis, after therapy</td>
<td>90 ± 10 (48)</td>
<td>110 ± 30 (35)</td>
<td>HPLC</td>
<td>5</td>
</tr>
<tr>
<td>Chronic periodontitis, before therapy</td>
<td>110 ± 50 (48)</td>
<td>100 ± 20 (35)</td>
<td>HPLC</td>
<td>5</td>
</tr>
<tr>
<td>Chronic periodontitis, diabetic</td>
<td>10790 ± 5077 (30)</td>
<td>1530 ± 1300 (30)</td>
<td>UV 532 nm</td>
<td>6</td>
</tr>
<tr>
<td>Chronic periodontitis, non-diabetic</td>
<td>9090 ± 8160 (30)</td>
<td>1530 ± 1300 (30)</td>
<td>UV 532 nm</td>
<td>6</td>
</tr>
<tr>
<td>Chronic periodontitis (men)</td>
<td>~ 4.2 µmol/g protein (9)</td>
<td>1.5 µmol/g protein (11)</td>
<td>F</td>
<td>7</td>
</tr>
<tr>
<td>Chronic periodontitis (women)</td>
<td>~ 3 µmol/g protein (14)</td>
<td>1.5 µmol/g protein (8)</td>
<td>F</td>
<td>7</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>~ 1150 ± 200 (16)</td>
<td>~ 900 ± 150 (16)</td>
<td>UV 532 nm</td>
<td>8</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>146 ± 64 (28)</td>
<td>27 ± 19 (20)</td>
<td>F</td>
<td>9</td>
</tr>
<tr>
<td>Diabetes</td>
<td>650 ± 130 (25)</td>
<td>230 ± 70 (25)</td>
<td>UV 335 nm</td>
<td>10</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>~ 7000 ± 200 (19)</td>
<td>~ 6800 ± 180 (19)</td>
<td>UV 532 nm</td>
<td>11</td>
</tr>
<tr>
<td>Diabetic without chronic periodontis</td>
<td>1910 ± 1720 (30)</td>
<td>1530 ± 1300 (30)</td>
<td>UV 532 nm</td>
<td>6</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>6930 ± 4220 (30)</td>
<td>3960 ± 3650 (30)</td>
<td>UV 530 nm</td>
<td>12</td>
</tr>
<tr>
<td>Fixed orthodontic appliances (posttreatment, 1 month)</td>
<td>3870 ± 3960 (50)**</td>
<td>-</td>
<td>Caymen kit</td>
<td>13</td>
</tr>
<tr>
<td>Fixed orthodontic appliances (posttreatment, 6 month)</td>
<td>3600 ± 2450 (50)**</td>
<td>-</td>
<td>Caymen kit</td>
<td>13</td>
</tr>
<tr>
<td>Fixed orthodontic appliances (pretreatment)</td>
<td>3760 ± 2180 (50)**</td>
<td>-</td>
<td>Caymen kit</td>
<td>13</td>
</tr>
<tr>
<td>Healthy, quid chewing/smoking habit</td>
<td>217.6 ± 34.1 (30)</td>
<td>181.2 ± 34.1 (35)</td>
<td>UV 332 nm</td>
<td>14</td>
</tr>
<tr>
<td>Oral leukoplakia</td>
<td>330 ± 70 (40)</td>
<td>80 ± 70 (40)</td>
<td>UV 335</td>
<td>15</td>
</tr>
<tr>
<td>Oral leukoplakia</td>
<td>651 ± 80 (20)</td>
<td>349 ± 90 (20)</td>
<td>UV 332 nm</td>
<td>16</td>
</tr>
<tr>
<td>Oral leukoplakia</td>
<td>417.5 ± 32.1 (50)</td>
<td>181.2 ± 34.1 (35)</td>
<td>UV 332 nm</td>
<td>14</td>
</tr>
<tr>
<td>Oral lichen planus</td>
<td>430 ± 7 (40)</td>
<td>80 ± 70 (40)</td>
<td>UV 335</td>
<td>15</td>
</tr>
<tr>
<td>Oral lichen planus</td>
<td>2030 ± 810 (21)</td>
<td>1470 ± 370 (20)</td>
<td>UV 335</td>
<td>17</td>
</tr>
<tr>
<td>Oral lichen planus</td>
<td>~ 3.5 ± 0.1 (32)</td>
<td>3.2 ± 0.1 (30)</td>
<td>UV 332 nm</td>
<td>18</td>
</tr>
<tr>
<td>Oral lichen planus</td>
<td>~ 5800 ± 2000 (36)</td>
<td>~ 3200 ± 1600 (36)</td>
<td>UV 332 nm</td>
<td>19</td>
</tr>
<tr>
<td>Oral premalignant lesions</td>
<td>~ 580 ± 420 (16)</td>
<td>~ 220 ± 160 (16)</td>
<td>UV 332 nm</td>
<td>20</td>
</tr>
<tr>
<td>Oral squamous cell carcinoma</td>
<td>1000 ± 210 (40)</td>
<td>80 ± 70 (40)</td>
<td>UV 335</td>
<td>15</td>
</tr>
<tr>
<td>Oral squamous cell</td>
<td>~ 3.9 ± 0.3 (26)</td>
<td>~ 3.2 ± 0.1 (30)</td>
<td>UV 332 nm</td>
<td>18</td>
</tr>
<tr>
<td>Oral squamous cell carcinoma</td>
<td>1067 ± 160 (20)</td>
<td>349 ± 90 (20)</td>
<td>UV 332 nm</td>
<td>16</td>
</tr>
<tr>
<td>Oral squamous cell carcinoma</td>
<td>930 ± 31.9 (50)</td>
<td>181.2 ± 34.1 (35)</td>
<td>UV 332 nm</td>
<td>14</td>
</tr>
<tr>
<td>Oral submucous fibrosis</td>
<td>430 ± 70 (40)</td>
<td>80 ± 70 (40)</td>
<td>UV 335</td>
<td>15</td>
</tr>
<tr>
<td>Oral submucous fibrosis</td>
<td>434.4 ± 42.1 (65)</td>
<td>181.2 ± 34.1 (35)</td>
<td>UV 332 nm</td>
<td>14</td>
</tr>
<tr>
<td>Patients received ivBPs without BRONJ</td>
<td>390 ± 110 (20)</td>
<td>210 ± 90 (17)</td>
<td>UV 332 nm</td>
<td>21</td>
</tr>
<tr>
<td>Patients with BRONJ** received ivBPs****</td>
<td>510 ± 130 (24)</td>
<td>210 ± 90 (17)</td>
<td>UV 332 nm</td>
<td>21</td>
</tr>
<tr>
<td>Periodontitis (posttreatment, non-smokers)</td>
<td>60</td>
<td>65</td>
<td>F</td>
<td>22</td>
</tr>
<tr>
<td>Periodontitis (posttreatment, smokers)</td>
<td>60</td>
<td>85</td>
<td>F</td>
<td>22</td>
</tr>
<tr>
<td>Periodontitis (pretreatment, non-smokers)</td>
<td>95</td>
<td>65</td>
<td>F</td>
<td>22</td>
</tr>
<tr>
<td>Periodontitis (pretreatment, smokers)</td>
<td>95</td>
<td>85</td>
<td>F</td>
<td>22</td>
</tr>
<tr>
<td>Recurrent aphthous</td>
<td>526 ± 92 (20)</td>
<td>232 ± 61 (20)</td>
<td>UV 332 nm</td>
<td>23</td>
</tr>
<tr>
<td>Recurrent aphthous</td>
<td>480 ± 160 (30)</td>
<td>280 ± 120 (20)</td>
<td>HPLC</td>
<td>24</td>
</tr>
<tr>
<td>Smokers (passive)</td>
<td>4360 ± 680 (20)</td>
<td>3470 ± 650 (20)</td>
<td>UV 332 nm</td>
<td>25</td>
</tr>
<tr>
<td>Smokers, 20 cigarettes/day</td>
<td>6070 ± 2330 (20)</td>
<td>3470 ± 650 (20)</td>
<td>UV 332 nm</td>
<td>25</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>~ 1000 ± 100 (16)</td>
<td>~ 900 ± 150 (16)</td>
<td>UV 332 nm</td>
<td>8</td>
</tr>
</tbody>
</table>

* HPLC: High performance liquid chromatography; UV: Ultraviolet; F: Fluorescence.
** We assumed that the MDA values are expressed as µmol/L in the original reference.13
*** BRONJ: bisphosphate-related osteonecrosis of the jaw.
**** ivBPs: intravenous bisphosphonates.

JOEDDD, Vol. 10, No. 2 Spring 2016
processing and analysis are simpler than well-established blood sampling due to its simpler matrix, one should consider some restrictions of saliva sampling. The analyte concentration in saliva could be affected by stimulated or non-stimulated sampling procedure, the amount of water intake, and also intake of some drugs. On the other hand, simpler matrix of saliva in comparison with plasma or serum provides more advantages from analytical point of view. In addition, the very wide range of MDA concentrations in saliva is questionable and should be re-investigated. Concerning the above-mentioned points researchers should consider analytical validation criteria to evaluate the reliability of the obtained results on salivary concentrations of MDA and other biomarkers under investigation. There is no doubt on the role of oxidative stress in the etiology of many oral or systemic diseases, but we strongly believe that MDA is not a reliable biomarker for oxidative stress not only in saliva but also in serum/plasma samples.

Competing interests

The authors declare no competing interests with regards to authorship and/or publication of this article.

References

22. Guentzsch A, Preshaw PM, Bremer-Streck S, Klinger G, Golckmann E, Sigusch BW. Lipid peroxidation and antioxidant activity in saliva of periodontitis patients: effect of
23. Farhad-Mollashahi L, Pouramir M, Motalebnejad M, Ho
narmand M, Bijani A, Shirzad A. Comparison of salivary to
tal antioxidant capacity and lipid peroxidation in patients
with recurrent aphthous stomatitis and healthy persons. J Ba
of salivary and serum antioxidant vitamins and lipid
peroxidation in patients with recurrent aphthous ulceration.
25. Dermitas M, Senel U, Yuksel S, Yuksel M. A comparison of
the generation of free radicals in saliva of active and passive
1203-72
26. Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of
malondialdehyde as a biomarker of oxidative stress in psy-
27. Khoubnasabjafari M, Ansarin K, Jouyban A. Comments con-
cerning “Comparison of airway and systemic malondial-
dehyde levels for assessment of oxidative stress in cystic fi-
brosis”. Lung 2015;193:867-8. doi: 10.1007/s00408-015-
9774-y
28. Waravdekar VS, Saslaw LD. A sensitive colorimetric meth-
method for the estimation of 2-deoxy sugars with the use of the
malondialdehyde-thiobarbtoric acid reaction. J Biol Chem
29. Khoubnasabjafari M, Ansarin K, Jouyban A. Critical review
of malondialdehyde analysis in biological samples. Curr Pharm
30. Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA,
Kalyanaraman B, Isschiropoulos H. Even free radicals
should follow some rules: a guide to free radical research
31. Halliwell B, Whiteman M. Measuring reactive species and
oxidative damage in vivo and in cell culture: How should
you do it and what do the results mean? Br J Pharmacol
2004;142:231-55. doi: 10.1038/sj.bjp.0705776
32. Grune T, Siems W, Esterbauer H. Comparison of different
assays for malondialdehyde using thiobarbituric acid. Forens-
33. Satoh K. Serum lipid peroxide in cerebrovascular disorders
determined by a new colorimetric method. Clin Chim Acta
34. Kikugawa K, Kojima T, Yamaki S, Kosugi H. Interpretation
of the thiobarbituric acid reactivity of rat liver and brain ho-
mogenates in the presence of ferric ion and ethylenediamine-
35. Schoenmakers AW, Tarladgis BG. Reliability of the thiobar-
bituric acid test in the presence of inorganic ions. Nature
1996;1153. doi: 10.1038/2101153a0
36. Stalikas CD, Konidari CN. Analysis of malondialdehyde in
biological matrices by capillary gas chromatography with elec-
tron-capture detection and mass spectrometry. Anal Bio-
37. Kadiiska MB, Gladin BC, Baird DD, Germolec D, Graham
LB, Parker CE, et al. Biomarkers of oxidative stress study II.
Are oxidation products of lipids, proteins, and DNA markers
38. Wade CR, van Rij AM. Plasma malondialdehyde, lipid pe-
roxides, and the thiobarbituric acid reaction. Clin Chem